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Thinning rates of liquid lamellae in surfactant-free non-Newtonian gas–liquid foams,
appropriate for ceramic or polymer melts and also in metals near the melting point,
are derived in two dimensions by matched asymptotic analysis valid at small capillary
number. The liquid viscosity is modelled (i) as a power-law function of the shear
rate and (ii) by the Ellis law. Equations governing gas–liquid interface dynamics and
variations in liquid viscosity are derived within the lamellar, transition and plateau
border regions of a corner of the liquid surrounding a gas bubble. The results show
that the viscosity varies primarily in the very short transition region lying between the
lamellar and the Plateau border regions where the shear rates can become very large.
In contrast to a foam with Newtonian liquid, the matching condition which determines
the rate of lamellar thinning is non-local. In all cases considered, calculated lamellar
thinning rates exhibit an initial transient thinning regime, followed by a t−2 power-law
thinning regime, similar to the behaviour seen in foams with Newtonian liquid phase.
In semi-arid foam, in which the liquid fraction is O(1) in the small capillary number,
results explicitly show that for both the power-law and Ellis-law model of viscosity,
the thinning of lamella in non-Newtonian and Newtonian foams is governed by the
same equation, from which scaling laws can be deduced. This result is consistent
with recently published experimental results on forced foam drainage. However, in
an arid foam, which has much smaller volume fraction of liquid resulting in an
increase in the Plateau border radius of curvature as lamellar thinning progresses,
the scaling law depends on the material and the thinning rate is not independent
of the liquid viscosity model parameters. Calculations of thinning rates, viscosities,
pressures, interface shapes and shear rates in the transition region are presented
using data for real liquids from the literature. Although for shear-thinning fluids
the power-law viscosity becomes infinite at the boundaries of the internal transition
region where the shear rate is zero, the interface shape, the pressure and the internal
shear rates calculated by both rheological models are indistinguishable.

1. Introduction
A gas–liquid foam is a composite of gas bubbles in a liquid matrix, in which

the volume fraction of the gas is large enough that the bubbles are not spherical.
As a result, adjacent gas bubbles in the foam are separated by nearly flat thin
liquid lamellar films. The Plateau borders are the intersections of many lamellar
films, and are bounded by curved gas–liquid interfaces (see figure 1). The change in
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Figure 1. Schematic representation of the cross-section of a foam for (a) a square array and
(b) an hexagonal array of bubbles, showing a set of adjacent gas bubbles and the lamellar,
transition and Plateau border regions. The dot-dash lined sections within each diagram are
the periodic domains within which asymptotic analyses are carried out for each geometry. The
symmetry of the array of bubbles fixes the angle Ψ : Ψ = π/4 in (a) and π/6 in (b) (Brush &
Davis 2005).

curvature of a bubble gas–liquid interface while moving from a flat lamellar region
into a curved Plateau border region leads to fluid flow from the lamella into the
Plateau borders. Depending on the foam configuration, fluid may then travel along
the Plateau borders and eventually out of the foam into a liquid reservoir. The fluid
flowing from the lamella into the Plateau borders results in thinning of the lamella
which, when accompanied by instability of the film, can lead to lamellar rupture and
the coalescence of neighbouring bubbles. The focus of this paper is the calculation of
lamellar thinning rates in foams having non-Newtonian liquid phase.

A wide variety of liquids may be foamed. Thinning rates and rupture times depend
strongly on the types of liquids involved. In pure metallic foams and in aqueous
solutions, the rupture time of liquid lamella can be milliseconds. In aqueous-like
liquids, surfactant can be added to lower the gas–liquid surface tension and decrease
the thinning rates by orders of magnitude (Breward 1999; Breward & Howell 2002).
Surfactants are not available to affect the surface tension of metallic foams. Therefore,
particles, compounds or other substances are often added to metallic foam to increase
the apparent liquid viscosity and to slow down the rupture process (Banhart 2001;
Yang & Nakae 2003). Ceramic foams are produced from polymer melts by the
condensation and the reaction products formed during cross-linking (Scheffler et al.
2002). The dynamics of the polymer foams are strongly dependent on the temperature.
In a related problem, the draining of liquid layers surrounding gas bubbles in glass
melts with high viscosity have been studied by Howell (1999). Recently, Safouane et al.
(2006) have reported forced drainage experiments in shear-thinning foam solutions
in which the solution viscosity is carefully controlled. The results showed that the
dynamics of liquid drainage in a foam with a shear-thinning liquid solution are
identical to the drainage of foam having a Newtonian liquid if an effective viscosity
based on an estimated shear rate within the foam is used. As we shall see, our results
provide quantitative estimates for this class of foams which corresponds to one of
two asymptotic limits.

Foams are three-dimensional networks of nodes, Plateau borders and lamellae, so
that flow within foam and the dynamics of foams is three-dimensional. However,
lamella span the Plateau borders and the nodes and, being free films, are nearly
uniform layers of liquid. Moreover, Plateau borders are the intersections of lamellae



Thinning of lamellae in surfactant-free foams with non-Newtonian liquid phase 237

that generally appear to be uniform in the axial direction. Therefore, the flow of fluid
from the lamella into the Plateau borders and the thinning of the lamella should be
well approximated by a two-dimensional section parallel to the thin direction through
the lamella and perpendicular to the axial Plateau border orientation. Depending on
the foam configuration, fluid may then travel along the Plateau borders and eventually
out of the foam into bulk liquid. Although flow does occur along the axial direction
of the Plateau border, because of gravitational and other forces, it is not anticipated
that this flow will play a role in altering the thinning rates of the lamella.

A complete description of the evolution of a foam would couple the drainage of
lamellae to Plateau borders (Breward & Howell 2002; Brush & Davis 2005) to the
drainage of fluid along the network of Plateau borders (Wang & Narsimhan 2006)
and finally to the interaction with any surrounding bulk fluid/solid. The work in this
paper could be coupled with that of Wang & Narsimhan to construct a model for
foam drainage.

Previously, thinning rates of lamella have been calculated in foams with Newtonian
liquid phases. Breward & Howell (2002) calculated foam thinning rates in pure and
surfactant-laden foams using matched asymptotic analysis. They examined the effect
of surfactant, among other effects, on the thinning rates. In their work, the radius of
curvature of the Plateau border is assumed fixed, i.e. the volume of fluid leaving the
lamella is not enough to cause displacement of the Plateau border.

Brush & Davis (2005) have extended this work for surfactant-free foams, to the
case in which the Plateau border radius of curvature can also be time dependent.
This case corresponds to a leading-order asymptotic limit of much smaller liquid
fraction, in which the area of fluid in the Plateau border cross-section is the same
order of magnitude as that in the lamella. Therefore, as thinning occurs, the Plateau
border radius must increase in order to accommodate incoming liquid flowing from
the lamella. Brush & Davis (2005) have defined the foam with a fixed Plateau border
radius as a semi-arid foam and the foam with a dynamic Plateau border as an arid
foam.

In this work, the effect of variations in the viscosity of the liquid phase on the
dynamics of lamellar thinning in a foam is considered. In particular, we consider
the case of a non-Newtonian fluid with liquid viscosity modelled (i) as a power-
law function of the local shear rate and (ii) by the Ellis model. (Models that
include variable viscosity in the equations of motion and continuity with no other
modifications, are also referred to as generalized Newtonian fluid models.) These
models have been chosen because Rosenblatt & Davis (1984) have shown that if a
full rheological model is used, such as a generalized Maxwell constitutive equation
which includes the shear dependence of viscosity, normal stress differences in the liquid
and relaxation times in the liquid, then, to leading order in the capillary number,
the only effect that emerges is the shear rate dependence of the viscosity. This latter
effect is appropriately included in the models presented here. (In this paper, foams are
labelled as Newtonian or non-Newtonian. It does not mean that the foams have this
rheological behaviour, but that the liquid phase of the foam behaves in this manner.)

It is also noted that there exists a model of fluid behaviour with a second Newtonian
Plateau for higher shear rates, the Carreau model (Bird et al. 1977). In this model
the shear thinning or thickening behaviour of the liquid is limited to a range between
lower and upper critical values of the shear rate, with Newtonian behaviour observed
otherwise. In a foam, the second Newtonian Plateau would occur in an internal
layer within the internal transition region layer (which is a very short region itself).
Although it would be possible to include a Carreau model of the viscosity, it is
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not clear what new insight the model would provide considering the limited region
in which there would be high shear rate Newtonian behaviour and considering the
difficulty in its implementation.

Therefore, with this analysis the categories of foams considered include Newtonian,
non-Newtonian power-law and non-Newtonian Ellis-law types, for the two
distinguished asymptotic limits designated as arid and semi-arid foams. The addition
of surfactants is not considered in this work.

2. The model
2.1. Governing equations

In two dimensions, the equations governing the horizontal and vertical components
of the liquid velocities u(x, z, t), w(x, z, t) and the pressure p(x, z, t) are

ρ (ut + uux + wuz) = − (p + φ)x − τ xx
x − τ xz

z , (2.1)

ρ (wt + uwx + wwz) = − (p + φ)z − τ xz
x − τ zz

z , (2.2)

and for incompressible fluid flow

ux + wz = 0. (2.3)

−∇φ is a body force, for example long-range molecular forces, and ρ is the density
of the fluid. The superscripted variables in the bulk equations denote components of
the shear stress tensor, which for an incompressible fluid is written as

τ =

(
τ xx τ xz

τ xz τ zz

)
= −2η{γ̇ }

(
ux

1
2
[uz + wx]

1
2
[wx + uz] wz

)
= −2η{γ̇ }E (= −η(∇v + ∇vT )), (2.4)

where η{γ̇ } is the fluid viscosity which is assumed to depend on the shear rate γ̇ . The
shear rate is given by

γ̇ 2 = 2E :E = 2Tr {E2} = 2
(
u2

x + w2
z

)
+ (uz + wx)

2 , (2.5)

where Tr{·} denotes the trace. The power-law model of the viscosity is given by

η{γ̇ } = k(γ̇ 2)(n−1)/2, (2.6)

and the Ellis model by

1

η
=

1

η0

(
1 +

∣∣∣∣√1/2 (τ : τ )

τ1/2

∣∣∣∣α−1
)

. (2.7)

In the Ellis model, η0 is the viscosity at zero shear rate, τ is the shear-stress tensor
and τ1/2 is the shear stress required to reduce the liquid viscosity to a value of η0/2.

Values of the parameters used in the power-law and the Ellis model are given in
the literature for a variety of fluids (Bird et al. 1977; Myers 2005). The Ellis model
has a constant viscosity for shear rates that are sufficiently low, and so behaves as
a Newtonian fluid in the low-shear-rate regime. As the shear rate increases beyond
a critical value, there is a transition to power-law behaviour which persists for all
greater shear rates.

At the gas–liquid interface z = h(t, x), the kinematic condition is

w = ht + uhx. (2.8)
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The normal stress balance leads to

−p + pext −
[
τ xxh2

x + τ zz − 2hxτ
xz
] (

1 + h2
x

)−1
= σhxx

(
1 + h2

x

)−3/2
, (2.9)

where σ is the gas–liquid surface energy and pext is the external pressure, which need
not be constant. Here, we consider a foam in which the gas bubbles are at constant
pressure and therefore pext is a constant PG. Since the system is pure and isothermal,
there are no Marangoni effects from surfactants or temperature-dependent surface
tension nor any other forces on the surface. In this case, the surface tangential stress is
continuous across the gas–liquid interface and, since the gas is stationary and inviscid,
the boundary condition for the liquid film is one of vanishing tangential stress giving[(

h2
x − 1

)
τ xz + hx(τ

xx − τ zz)
]

= 0. (2.10)

The free film is bisected by a centreline of symmetry at z = 0, along which τ xz = 0
and w = 0. An effective pressure p∗ = p + φ is used to replace p in the bulk and in
the interfacial conditions by p∗ − φ.

The analysis proceeds by examining a ‘corner’ of the liquid region surrounding a
gas bubble, representing the smallest repeatable unit that can be used by symmetry
operations to generate the entire foam. The ‘corner’ is divided into three regions, each
of which is characterized by different scaling. Figure 1 shows the geometry of the
liquid corner configuration. The lamellar region is a thin film within which viscous
forces are dominant. The Plateau border region is not a thin film, and therein the
capillary forces dominate. To match these two regions an internal transition region
is required, which is also a thin film, in which both capillary and viscous forces
balance.

This analysis is strictly two-dimensional. Within the given two-dimensional section
of the foam, mass balance requires that the total fluid area remains constant, i.e. liquid
is not allowed to drain out of the plane of the given cross-sectional area considered.
The total length of the domain also remains constant.

2.2. Viscosity

It is useful to estimate the magnitude of the shear rate γ̇ within a free-film of a foam.
In lubrication theory applied to a film on a substrate, the speed of the fluid ranges
from U to 0 over a distance h, the thickness of the fluid layer. The shear rate is
dominated by this variation and so γ̇ ∼ U/h ∼ |uz|, where z is the coordinate across
the film. In free-films the flow is plug-flow to leading order and in general the flow
varies along the film, so that the leading-order shear rate is γ̇ ≈ |ηux |, where u is the
lateral component of the fluid velocity.

Using estimates from Breward & Howell (2002) and Brush & Davis (2005) for
the fluid velocity, the lamellar and the transition region lengths and the (Newtonian)
viscosity, it can be shown that in the lamellar region the shear rate γ̇ ≈ 3 s−1, whereas
in the transition region γ̇ ≈ 3 × 103 s−1. (These examples are for foams consisting
of liquid metal or aqueous solution, which have the largest shear rates among the
foams that have been studied.) The shear rate in the transition region is much larger
than that in the lamella because the length of the transition region is much smaller.
It is anticipated that significant variation in the liquid viscosity can be observed
during film thinning within the transition region and possibly also within the lamellar
region.

Previous work on Newtonian foams shows that at leading order in capillary
number, the lateral component of the fluid speed reaches its maximum at the
lamellar/transition region boundary and is a minimum at the transition/Plateau
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Figure 2. Schematic log–log plots of the shear rate versus the viscosity on the left-hand side
and the shear rate versus distance in the transition region on the right-hand side. Both the
power-law and the Ellis models of the viscosity are shown on the left. The horizontal line
indicates the critical value of shear rate derived from the Ellis model beyond which the flow
is characterized by power-law behaviour. Curve 1 represents a case in which the viscosity is
not large enough for the fluid to exhibit power-law behaviour in the Ellis model, whereas in
curve 2 it is large enough. Estimates predict that the shear rate in the transition region in some
foams can be much larger than the critical value.

border boundary (Brush & Davis 2005). Therefore, the shear rate vanishes at these
boundaries, and the power-law viscosity is unbounded for shear-thinning fluids (n< 1)
at these locations. Nevertheless, the power law is included in this work, because this
model has been used extensively in many studies, data are available for a variety
of power-law fluids, the calculated solutions for the shape, the shear rate and the
pressure fields within the foam layer are not singular as will be demonstrated later and
the solutions reproduce the Newtonian fluid results in the instance n → 1. In addition,
the viscosity of shear-thickening fluids is not singular according to the power-law
model, in which as γ̇ → 0 then η → 0. Nevertheless, the accuracy of any generalized
Newtonian fluid model is always a consideration (Myers 2005), particularly at low
shear rates, therefore, the Ellis model is also included in this analysis. The Ellis
model viscosity is well behaved at locations where the shear rate vanishes. The results
determined from the power law will be compared to those of the Ellis law, providing
additional insight. In figure 2 schematic diagrams of the shear rate versus the viscosity
and of the shear rate as a function of the distance within the transition region are
shown. The figure qualitatively illustrates possible variations of the viscosity within
the transition region as a function of the shear rate. However, in an actual foam any
changes in the viscosity would not be expected to be symmetric about the midpoint
of the (asymmetric) transition region.

3. Analysis
3.1. Scaling in the Plateau border region

Dimensionless fluid motion, continuity and energy equations and boundary conditions
appropriate for the capillary static region are derived by transforming the equations
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according to:

(x̃, z̃) =

(
x

L0

,
z

L0

)
, (ũ, w̃) =

(
u

U0

,
w

U0

)
,

t̃ =

(
U0

L0

)
t, and P̃ =

(
L0

σ

)
p∗,

⎫⎪⎪⎬⎪⎪⎭ (3.1)

where L0 is the initial lamella length, U0 is a velocity to be determined and σ is the
gas–liquid surface tension. There are no body-force potentials in bulk liquid (φ = 0).
Additionally, the capillary number C = ηsU0/σ , where ηs is a particular value of the
viscosity which can be provided later if needed. The following dimensionless equations
are derived for the bulk liquid:

ReC (ũt̃ + ũũx̃ + w̃ũz̃) = −P̃x̃ + C {2 [η̃ũx̃]x̃ + [η̃ (−ũx̃x̃ + ũz̃z̃)] + η̃z̃ [w̃x̃ + ũz̃]}, (3.2)

ReC (w̃t̃ + ũw̃x̃ + w̃w̃z̃) = −P̃z̃ + C {2 [η̃w̃z̃]z̃ + [η̃ (−w̃z̃z̃ + w̃x̃x̃)] + η̃x̃ [w̃x̃ + ũz̃]}, (3.3)

where η̃ = η/ηs . The continuity equation is

ũx̃ + w̃z̃ = 0. (3.4)

At the gas–liquid interface z̃ = h̃(̃t, x̃),

w̃ = h̃t̃ + ũh̃x̃ , (3.5)

−
P̃ +
2η̃C(

1 + h̃2
x̃

) [ũx̃ h̃
2
x̃ + w̃z̃ − h̃x̃ (ũz̃ + w̃x̃)

]
=

h̃x̃x̃(
1 + h̃2

x̃

)3/2 (3.6)

and

−2η̃ (ũx̃ − w̃z̃) h̃x̃ + η̃ (ũz̃ + w̃x̃)
(
1 − h̃2

x̃

)
= 0. (3.7)

Finally, at the centreline

ũz̃ = w̃ = 0. (3.8)

Since capillary forces are dominant over viscous effects in the Plateau border then, at
leading order in C, the determination of the border shape does not require knowledge
of the fluid velocity. Thus, the set of equations governing the shape in a foam with
a generalized Newtonian liquid is identical to the set governing the interface shape
in a Newtonian liquid foam. The leading-order interface shape in the Plateau border
region is

h̃(x̃, · ) = hol + ã

(
1 − 1√

2

)
− 1√

2
P
+

1


P

{
1 −

[
1√
2

− 
P

(
x̃ − L − ã√

2

)]2
}1/2

,

(3.9)

where the notation h̃(x̃, ·) refers to a specific instant in time, hol is an unknown
constant, 
P is the pressure jump across the gas–liquid interface and ã is the Plateau
border radius of curvature. However, the matching conditions between the Plateau
border and the transition region may be different for foam with a non-Newtonian
liquid than for foam with a Newtonian liquid. Therefore, the coefficients hol and 
P

remain undetermined.

3.2. Derivation of the thin-film equations

The derivation of the thin free-film models in this study is similar to the derivation
used by Erneux & Davis (1993). However, the treatment of the viscous stresses is
different and so the details are included below.
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The lamellar region is a thin film. Let ε = h0/L0 	 1 be the ratio of the initial
lamellar thickness to the initial lamellar length. The scalings appropriate for a thin
lamellar region are

X = x
L0

, Z =
z

h0

, T =
U0

L0

t, U =
u

U0

,

W =
W

εU0

, P =
ε2L0

ηsU0

p∗ and H =
h

h0

,

⎫⎪⎪⎬⎪⎪⎭ (3.10)

where ηs is a viscosity scale, which is chosen later. The components of the stress
tensor are scaled by

(τ̂ XX, τ̂ ZZ) ≡ (τXX, τZZ)

(ηsU0/L0)
and τ̂ XZ ≡ τXZ

(ηsU0/h0)
. (3.11)

The set of equations governing dynamics within the film are

ε2Re (UT + UUX + WUZ) = −PX − τ̂ ZX
Z − ε2τ̂ XX

X , (3.12)

ε4Re (WT + UWX + WWZ) = −PZ − ε2τ̂ XZ
X − ε2τ̂ ZZ

Z (3.13)

and

UX + WZ = 0. (3.14)

At the gas–liquid interface Z = H (X, T ):

W = HT + UHX, (3.15)

−P + PG −
[
ε4H 2

Xτ̂XX + ε2τ̂ ZZ − 2ε2HXτ̂XZ
](

1 + H 2
X

) =
ε3C−1HXX(
1 + ε2H 2

X

)3/2 (3.16)

and

ε2HX

[
τ̂ XX − τ̂ ZZ

]
− τ̂ XZ

(
1 − ε2H 2

X

)
= 0, (3.17)

where PG is the (uniform) pressure in the gas bubble and C = ηsU0/σ is the capillary
number. At the free-film centreline (Z = 0):

UZ = W = 0. (3.18)

In the rescaled variables the components of stress tensor are

τ̂ XX = −2η̃UX, τ̂ ZZ = −2η̃WZ and τ̂ XZ = η̃
(
UZ + ε2WX

)
. (3.19)

The two models of the viscosity are also rescaled. Substituting the normal
components of the stress tensor, the power-law viscosity becomes

η̃ = K
{
U 2

Z + 2ε2
[(

U 2
X + W 2

Z

)
+ WXUZ

]
+ ε4W 2

X

}(n−1)/2
, (3.20)

where K = kUn−1
0 /(ηsh

n−1
0 ). The Ellis viscosity becomes

1

η̃
= 1 + Cα−1

v

∣∣∣∣ [1

2

(
(τ̂ XX)2 + (τ̂ ZZ)2 +

2

ε2
(τ̂ XZ)2

)]1/2 ∣∣∣∣α−1

, (3.21)

where Cv = η0U0/|τ1/2|L0. Later the viscosity will be further simplified. (Note that the
dimensionless viscosities of both the power-law and Ellis models are denoted by η̃;
however, the scalings for the two models will not be the same.)
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The functions U , W , P , τ̂ XX , τ̂ XZ and τ̂ ZZ are expanded as series in even powers
of ε, i.e. any such function φ = φ(0) + ε2 φ(1) + · · ·. In the bulk liquid at O(1) in ε

−P
(0)
X − τ̂

XZ(0)
Z = 0, (3.22)

−P
(0)
Z = 0 (3.23)

and

U
(0)
X + W

(0)
Z = 0. (3.24)

At the gas–liquid interface

P (0) = PG, (3.25)

τ̂ XZ(0) = 0, (3.26)

W (0) = HT + U (0)HX, (3.27)

and, at the centreline

W (0) = U
(0)
Z = 0. (3.28)

Leading-order solutions are: U (0)(X, T ) is independent of Z,

P (0) = PG, τ̂XZ(0) = 0, W (0) = −U
(0)
X Z (3.29)

and, therefore,

HT +
(
U (0)H

)
X

= 0. (3.30)

The governing set of equations at O(ε2) are

Re
(
U

(0)
T + U (0)U

(0)
X

)
= −P

(1)
X − τ̂

XX(0)
X − τ̂

XZ(1)
Z , (3.31)

−P
(1)
Z − τ̂

ZZ(0)
Z = 0 (3.32)

and

U
(1)
X + W

(1)
Z = 0. (3.33)

At the gas–liquid interface Z = H (X, T )

W (1) = U (1)HX (3.34)

and

−P (1) − τ̂ ZZ(0) = C
−1

HXX. (3.35)

The capillary number has been rescaled as C
−1 ≡ εC−1 in order to retain capillary

effects in the free film. In addition,[
τ̂ XX(0) − τ̂ ZZ(0)

]
HX − τ̂ XZ(1) − H 2

Xτ̂XZ(0) = 0. (3.36)

Completing the O(ε2) set of equations are the conditions at the free-film centreline
(Z = 0):

U
(1)
Z = W (1) = 0. (3.37)

Solutions to the O(ε2) system are found first by integrating (3.32) and using (3.35)

to discover P (1) + τ̂ ZZ(0) = −C
−1

HXX . Differentiating and substituting into (3.31) gives

τ̂ XZ(1) = (−Re[U (0)
T + U (0)U

(0)
X ] + C

−1
HXXX + τ̂

ZZ(0)
X − τ̂

XX(0)
X )Z + C4(X, T ), (3.38)
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where C4 is an unknown function. The assumption has been made, consistent with
this analysis, that τ̂

ZZ(0)
X and τ̂

XX(0)
X are not functions of Z. Since

τ̂ XZ = η̃
[
UZ + ε2WX

]
= τ̂ XZ(0) + ε2τ̂ XZ(1) + · · · (3.39)

and τ̂ XZ(0) = 0, it follows that τ̂ XZ(1) ∝ U
(1)
Z + W

(0)
X . At Z = 0, these derivatives each

vanish as required by the O(1) solutions, and by the condition (3.37). Thus, τ̂ XZ(1)

(Z = 0) = C4 by (3.38), so that C4 = 0. Evaluating τ̂ XZ(1) at the liquid–gas interface
and substituting the result into (3.36) gives(

−Re
[
U

(0)
T + U (0)U

(0)
X

]
+ C

−1
HXXX

)
H +

[(
τ̂ ZZ(0) − τ̂ XX(0)

)
H
]
X

= 0. (3.40)

Also noting that τ̂ ZZ(0) ∝ W
(0)
Z and τ̂ XX(0) ∝ U

(0)
X , then from the continuity equation

at leading order, τ̂ ZZ(0) = −τ̂ XX(0) and the quantity τ̂ ZZ(0) − τ̂ XX(0) in (3.40) may be
replaced by −2τ̂ XX(0). The final result is the pair of coupled equations:

Re
[
U

(0)
T + U (0)U

(0)
X

]
H = C

−1
HXXXH −

[
2τ̂ XX(0)H

]
X

, (3.41)

and the leading-order continuity equation, (3.30) (repeated here),

HT +
(
U (0)H

)
X

= 0, (3.42)

governing flow and interface shape in the thin film. In the generalized Newtonian
liquid free film, the effect of the variable viscosity is included in τ̂ XX(0).

A (leading-order) solution of (3.41) and (3.42) is a uniformly thinning lamella
HL(T ) with a fluid velocity U (X) = QX/L(T ), where L(T ) is the lamellar length,
Q= HL(T )U (L) is the fluid flow rate out of the lamella and into the transition region
and L is the location of the lamellar–transition region boundary. The flow rate Q

is determined by a matching condition between the Plateau border shape and the
transition region shape arising at the Plateau border/transition region boundary.

In this work it is also assumed there is no drainage out of the plane (along Plateau
borders) and, thus, two additional geometrical conditions are imposed on the domain
size and area, constraining the evolution of L and a. At leading order (in capillary
number) these integrated expressions are (Brush & Davis 2005)

L̄ − 1 =
a0

L0

(ā − 1) tan ψ, (3.43)

h0L0

a2
0

(HLL̄ − 1) =
1

2
(1 − ā2)(tan ψ − ψ), (3.44)

in dimensionless form, in which the real length of the lamella is L(t) = L0L̄(T ) and
the real Plateau border radius of curvature is a(t) = a0ā(T ). The subscript ‘0’ denotes
the initial value of a parameter. As discussed in Brush & Davis (2005), there are two
geometric ratios a0/L0 and h0L0/a

2
0 either of which can be chosen to be unity leading

to different leading-order dynamical results. If a0/L0 ∼ 1 the foam is of ‘semi-arid’
type in which case h0L0/a

2
0 ∼ ε/δ0. In this case, a = L = 1 for all time. If h0L0/a

2
0 ∼ 1,

then a0/L0 ∼ (ε/δ0)
2, the foam is ‘arid’; although L=1 for all time, now a is a function

of the lamellar thickness. In order to complete the analysis, specific forms for the
viscosity are derived.
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3.3. Scaling in the transition region

In order to bring viscous and capillary forces into balance in the transition region,
the axial coordinate is stretched according to

X̂ =
X − L

δ
, (3.45)

which holds at any instant in time, where ε 	 δ 	 1 and in which all variables
have been scaled by L0. Despite the coordinate transformation the transition region
remains a thin free-film. Applying the transformation to the thin film, continuity
equation (3.42) gives

HT −
[
LT

δ
+

δT X̂

δ

]
HX̂ +

(
U (0)H

)
X̂

δ
= 0. (3.46)

The leading-order result gives a constant flow rate through the transition region Q

≡ U (0)H , since all terms involving time derivatives are of higher order. Therefore, for
small Re, the transformed equation of motion (3.41) reduces to

C
−1

HX̂X̂X̂H

(
1

δ3

)
− 2(τ̂ 0X̂X̂H )X̂

(
1

δ

)
= 0. (3.47)

The component of the shear stress is proportional to the derivative of the lateral

component of the fluid velocity, i.e. τ̂ 0X̂X̂ = −2η̃U
(0)
X ∼ O(1/δ). In order for the

viscous forces to balance the capillary-induced-pressure forces at leading order Ĉ−1 ≡
C

−1
/δ0 ∼ O(1), where δ ≡ δ̄δ0 and δ̄ ∼ O(1). Assuming that Ĉ−1 ∼ O(1), then without

loss of generality Ĉ−1 is set to unity. Equation (3.47) becomes

1

δ
HX̂X̂X̂H + 4

(
η̃U

(0)

X̂
H
)

X̂
= 0. (3.48)

The asymptotic form of the transition region shape at the transition/Plateau border
is derived in Appendix A. The result gives the approximate shape of the transition
region at the transition region/Plateau border boundary as

H =

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
X̂2

2
+ A1X̂ + A2, (3.49)

where Q̂= Qδ,

D = lim
X̂→∞

⎡⎣η̃−∞

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)
+

1

2

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)2
⎤⎦ , (3.50)

η̃X̂′ is the derivative of the viscosity with respect to distance in the transition region,
η̃−∞ is the scaled viscosity at the lamella/transition border and HL is the lamellar
thickness. The result reveals that, through D, the variable viscosity contributes to
the magnitude of the curvature at the transition Plateau border boundary at leading
order.

3.4. Matching

In order to determine the flow rate Q̂ that governs the thinning rate of a lamella,
the transition-region solution (3.49) must be matched to the Plateau-border solution
(3.9). Although previously Breward & Howell (2002) and Brush & Davis (2005)
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have presented the results of matching procedures in foams, here a systematic and
somewhat different analysis is presented in detail in Appendix B. The result is

1

εã
=

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
1

δ2
, (3.51)

which is the matching condition for the curvatures of the transition and the Plateau
border regions at leading order. In general, ã = a′/L0, and δ = δ′/L0 may be functions

of time, where the ‘prime’ denotes the dimensional length. Recalling that Q̂= Qδ,
a = a′/a0, δ = δ′/δ0, defining Q̆ ≡ Q

√
η̃2

−∞ + 2D, and substituting all quantities in
(3.51) gives

δ
′2
0

h0a0

=
1

2

(
8Q̆

3H
3/2
L

)2

a. (3.52)

The above relationship denotes that the left-hand side is constant and the right-hand
side is a function of time. Therefore, without loss of generality, both sides are set to
unity resulting in

δ
′2
0 = h0a0 and Q̆ =

3
√

2

8

H
3/2
L

a1/2
. (3.53)

The first condition in (3.53) represents a balance between capillary forces of the
Plateau border and the pressure forces in the transition region. This balance of forces
couples with the additional previously imposed balance between the capillary induced
pressure forces and the viscous forces in the transition region, i.e. C = ε/δ0, to set the
lateral fluid velocity scale, namely, U0 = σ/ηs

√
h0/a0. The second matching condition

relates the flow rate Q̆ to the scaled radius of curvature of the Plateau border and
the scaled thickness of the lamella. However, Q̆ depends on the parameter D, which
involves the integration of a function of the transition-region shape over the entire
transition region. Thus, although constant, D introduces a non-local contribution to
the matching condition. This is a fundamental difference between the non-Newtonian
and the Newtonian liquid. Therefore, the solution to the equations governing the shape
and the viscosity in the transition region, which matches with the Plateau border and
the lamella appropriately, is determined by the numerical procedure described below.
In the Newtonian limit the matching results reduce exactly to the form given in Brush
& Davis (2005).

3.5. Numerical evaluation

The transition-region shape obeys the quasi-static equation:

εC−1

δ
HX̂X̂X̂H − 4Q

(
η̃HX̂H

)
X̂

= 0, (3.54)

because the flow rate Q ≡ UH is constant throughout the transition region at any
instant in time. The transformed interface shape H = FHL is introduced so that at
the lamellar-transition boundary,

F ≡ H

HL

→ 1 as X → −∞. (3.55)

At the transition–Plateau border the leading-order curvatures are matched giving

FXX → 1 as X̂ → ∞, provided that δ = (HLa)1/2 , (3.56)
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which requires that δ′ = (hLa′)1/2 in dimensional form. The equation governing the
transition-region shape is then

H 2
L

δ
FX̂X̂X̂F − 4Q

(
η̃
FX̂

F

)
X̂

= 0, (3.57)

since εC−1/δ0 = 1. Once again these scalings give the characteristic fluid velocity

U0 =
σ

ηs

(
h0

a0

)1/2

, (3.58)

where ηs is given below. In a Newtonian fluid the scaled viscosity η̃ is unity and
the coefficients in (3.57) must balance to give Qδ/H 2

L ∼ O(1), so that Q ∼ H
3/2
L /a1/2.

In the case of a generalized Newtonian fluid the same balance applies; however, the
ratio of the two coefficients will be a function of the material viscosity parameters.
The two viscosity models are examined below.

3.5.1. Power-law foam

The power-law viscosity is written in terms of the components of the fluid velocity:

η̃ = K
{
U 2

Z + 2ε2
[(

U 2
X + W 2

Z

)
+ WXUZ

]
+ ε4W 2

X

}(n−1)/2
, (3.59)

where K = kUn−1
0 /(ηsh

n−1
0 ), η̃ ≡ η/ηs , and ηs is a scale factor to be chosen. The fluid

velocities are expanded in even powers of ε, and since the flow is lateral, the leading-
order term in the expansion of U (X, Z, T ) is not a function of Z, i.e. U (0)(X, T ).
Therefore, the coefficient K must be rescaled as K = εn−1K . Proceeding with the
expansion of the viscosity the leading-order result is

η̃ = 2n−1K
∣∣U (0)

X

∣∣n−1
. (3.60)

In the transition region,

U
(0)

X̂
=

−QHX̂

H 2
, (3.61)

after transforming to transition region coordinates. It follows that

η̃ =
2n−1KQ

n−1

δn−1Hn−1
L

∣∣∣∣FX̂

F 2

∣∣∣∣n−1

. (3.62)

The equation for the shape of the transition region (3.57) is integrated once, and
the expression for the viscosity (3.62) is substituted into the result giving

FX̂X̂ =
(FX̂)2

2F
+ 4λn

∣∣∣∣FX̂

F 2

∣∣∣∣n−1
FX̂

F 2
, (3.63)

where

λn =
2n−1Q

n
K

Hn+1
L δ

n−2
δn−1
0

. (3.64)

Note that for fixed n, λ is a constant. By choosing the viscosity scale to be

ηs =
kUn−1

0

(a
′
0h0)(n−1)/2

, (3.65)
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Figure 3. The function λ{n} versus the power-law exponent n. The value λ{1} = 0.5303
represents a Newtonian liquid, whereas n< 1 is shear thinning and n> 1 is shear thickening.

the flow rate becomes

Q =

(
λ

21−1/n

)
H

3/2
L a1/2−1/n, (3.66)

so that the equation for lamellar thinning becomes

dHL

dT
= −

(
λ

21−1/n

)
H

3/2
L a1/2−1/n. (3.67)

The derived scalings are summarized:

U0 =

(
σ

ka′
0

)1/n√
a′

0h0 =

(
σ

ka′
0

)1/n

δ′
0, (3.68)

ηs =
σ

a′
0

[
σ

ka′
0

]−1/n

, (3.69)

and the time scale, L0/U0, is

τ =

(
σ

ka′
0

)−1/n
1

δ0

(3.70)

recalling that δ0 = δ′
0/L0.

The function λ{n} is determined by the numerical solution of (3.63) subject to
the end conditions, (3.55) and (3.56). The numerical method sets the value of the
transition region thickness as well as an initial value of the interface slope at X =0,
and then iterates the slope until convergence of the solution to both of the end
conditions, using a two-directional shooting method. The values of λ{n} are plotted
in figure 3 as a function of n; n< 1, n= 1 and n> 1 correspond to shear-thinning,
Newtonian and shear-thickening fluids, respectively.

Finally, the loop is closed with regard to the matching procedure presented earlier
by equating the flow rates from (3.53) and (3.66), which leads to a relation between λ
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and the integral D:

λ =
3
(
2−3/2−1/n

)
a1−1/n

√
η̃2

−∞ + 2D
. (3.71)

For the semi-arid foam, the radius of curvature of the Plateau border remains
unchanged during lamellar thinning, i.e. a =1. Integration of (3.67) gives the lamellar
thickness as a function of time:

HL =

(
1 +

T̃

2

)−2

, (3.72)

where the rescaled time is

T̃ = T
λ

2(1−1/n)
=

λ

2(1−1/n)

(
σ

ka′
0

)1/n
(a′

0h0)
1/2

L0

t. (3.73)

The physical implication of this result is that in a semi-arid foam, the thinning of
a liquid lamella with power-law viscosity is identical to the thinning of a liquid
Newtonian lamella, but on a reduced time-scale which is calculated here. The time
constant is uniquely determined by knowledge of the power-law exponent n (through
λ{n}) and the coefficient k for the particular foam liquid phase, giving the characteristic
thinning time.

The arid foam may also be integrated after substituting the expression a as a
function of HL derived from (3.44) giving

1

H
1/2
L

[(
1 + R′ − HL

R′

)−(n−2)/4n

×
(

1 + R′ − HL

1 + R′

)(n−2)/4n

× 2F1

{
−1

2
,
n − 2

4n
;
1

2
;

HL

1 + R′

}]
=

T̃

2
+

(
R′

1 + R′

)(n−2)/4n

× 2F1

{
−1

2
,
n − 2

4n
;
1

2
;

1

1 + R′

}
. (3.74)

Here 2F1{a, b; c; x} is the symbol for the hypergeometric function and R′ =
(tan ψ − ψ)/2 > 0. In the arid foam, as opposed to the semi-arid foam, the difference
between Newtonian (n= 1) and non-Newtonian foam is not accounted for by a
simple rescaling of time, since n appears explicitly in the dynamical equation for the
interface thickness.

Table 1 provides the values of k and n for a number of different fluids. The values
of k and n for shear-thinning fluids are given by Bird et al. (1977) and by Myers
(2005). A hypothetical dilatant (shear-thickening fluid) is also given. References for
other data are included in the table. The values h0 = 10−5 cm, L0 = 10−3 cm and
a0 = 10−3 cm are chosen, valid for semi-arid foam. Hec 0.5% is an aqueous solution
containing 0.5% hydroxyethylcellulose. Note that although polystyrene is very slow
thinning, it is included in the analysis.

In figure 4 lamellar thicknesses are plotted as a function of time for semi-arid foams
and for arid foams having different power-law exponents. In order to compare the
different cases, the equations have been re-written in a canonical form by applying
the transformations:

ĥL =
2HL

(R + 2)
and t̂ =

T λ{n}(R + 2)1/2

23/2−1/n
, (3.75)
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Fluid k (gm sn−2 cm−1) n σ (gm s−2) λ τ−1 (s−1)

Hec 0.5% 0.84 0.5088 0.073a 0.048 60.66
Blood 0.035 0.6 0.056b 0.107 4573.00
Polystyrene 3.5 (105) 0.039 0.031c 0.009 ∼0.00
Dilatant 1.0 1.25 0.05d 0.811 3.62

aSurface tension of water at 20◦C.
bFrom Hrncir & Rosin (1997).
cFrom Hamdorf & Johannsmann (2000).
dFictitious material in which the surface tension is chosen to be similar to
the other cases.

Table 1. Parameters k and n for power-law fluids, their gas–liquid surface energies, the value
of λ calculated numerically from the solution to (3.63), and the characteristic time scale for
thinning given in (3.73). The viscosity parameters, except for the dilatant liquid, were taken
from Myers (2005) and from Bird et al. (1977).
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Figure 4. Plot of the lamellar thickness as a function of time for semi-arid (dashed line) and
arid (solid lines) foams and for different power-law exponents, n = 0.5, 0.75, 1.0 and 1.25. The
time scale has been chosen so that the semi-arid foam is independent of n in these coordinates;
however, the arid foam is not. In the arid case, as the viscosity power-law exponent becomes
larger, the thinning rate increases. Of course, the actual evolution of the film thickness in
dimensional time depends on the parameter k in the power-law fluid.

where R = tan ψ − ψ > 0, which is slightly different from the form written in Brush
& Davis (2005). The semi-arid thinning rate is given by

dĥL

dt̂
= −ĥ

3/2
L . (3.76)

The arid thinning rate is given by(
1

p

)
dĥL

dt̂
= −ĥ

3/2
L

[
1 − ĥL

]1/4−1/(2n)

where p =

(
1 +

2

R

)1/4−1/(2n)

. (3.77)
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Figure 5. The viscosity through the transition region of a number of the liquids listed in
table 1. Note that the ordinate η/21−1/n is equal to λ|FX/F 2|n−1.

The results presented in figure 4 show that in all cases, after an initial transient, the
lamellae settle into a t−2 power-law thinning behaviour. In these variables, as discussed
previously, there is only one thinning law for all semi-arid foams, given by the solution
of (3.76). This result is consistent with the conclusions reached by Safouane et al.
(2006) based on observations from their forced foam drainage experiments. They
concluded that there is a particular effective viscosity for foams with shear-thinning
liquid, for which the drainage of liquid from the foam (into a liquid reservoir) occurs
at the same rate (obeys the same law) as would the drainage of liquid from a foam
consisting of a Newtonian liquid of the same effective viscosity. Although a change
in time scale could be made for arid foam that would eliminate the coefficient p in
(3.77), no transformation can eliminate the explicit dependence of the thinning rate
equation on the power-law exponent n. Therefore, an invariant dynamical law cannot
be found for the thinning of lamellae in arid foams. Finally, figure 4 also shows that
the properties of the fluid primarily affect only the initial transient during thinning as
all foams eventually evolve into identical power-law behaviour. However, in the cases
shown, the transient stage can account for nearly a century of lamellar thinning.

Figure 5 shows plots, on a logarithmic scale, of the viscosity η̃/21−1/n within
the transition region for foams that consist of the liquids listed in table 1. Blood,
hydroxyethylcellulose and polystyrene are shear thinning and all viscosities exhibit
singular behaviour at the boundaries of the transition region where the shear
rate vanishes. Examples of a fictitious dilatant (shear thickening) liquid foam and
Newtonian liquid foam are also given, both exhibiting well-behaved viscosities. In
all of the numerical calculations, the transition-region height is assigned the value
1.01 at the location X̂ = 0, so that the heights of calculated transition regions are
all identical at this location. The results show that the shear-thinning fluids blood,
hydroxyethylcellulose and polystyrene have minima in viscosity at X̂ = 1.49, 1.46
and 1.49, respectively, despite the wide range in magnitude of the transition region
viscosities for these materials. Note, however, that the shear-thickening foam has an
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Figure 6. Transition region functions for (a) Newtonian Al, (b) blood, (c) hydroxyethylcellu-
lose, (d) polystyrene and (e) a hypothetical shear-thickening liquid, generated with a power-law
model of the viscosity.

extrema in viscosity further away from the lamellar-transition border than do the
other cases.

In figure 6 the transition-region shape F , and measures of the viscosity, η̃/21−1/n,
the pressure, Pδ0, and the shear rate, 21/2−1/n|γ̇ |/(σ/ka′

0)
1/n, are plotted for the same

foams as presented in figure 5. Despite the singular nature of the viscosity at the
transition-region boundaries, the values of all other functions in the transition region
are well behaved. Recall that because of the scaling used for the differential equations
governing the interface shape and the viscosity in semi-arid foam, the quantities
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plotted in figure 6 are time invariant. In arid foam this is not the case. In all plots
shown in figure 6 the ordinates and abscissae are identical, therefore, differences in the
viscosity and slight displacements of the shape and the pressure distributions among
the shear-thinning and Newtonian cases (figure 6a–d ) are discernible. However, again,
the shear-thickening liquid phase in figure 6(e) shows substantial differences in shape
and pressure distribution when compared to the other cases.

In order to ascertain the effect of the singularity in the power-law model of the
viscosity of shear-thinning liquid foams on the accuracy of the results, in the next
section we develop the Ellis model in which the viscosity is well behaved at all shear
rates. The results calculated using the Ellis law are compared to those calculated
using the power-law viscosity.

3.5.2. Ellis foam

Methodology similar to that used in treating the power-law foams is used to derive
the lamellar thinning rate and the transition region variables in an Ellis law foam.
The viscosity in the Ellis law model is scaled by η0, which is most appropriate for
cases in which the viscosity does not decrease significantly far into the power-law
regime (see figure 2). (As will be shown, a more appropriate choice can be made for
the case of a highly shear-thinning liquid, such as hydroxyethylcellulose.) All other
scalings used in the case of the power-law viscosity foam are retained. This leads to
the lamellar thinning rate,

dHL

dT
= −Q, (3.78)

where

Q = λe

H
3/2
L

a1/2
. (3.79)

The function λe is found from the solution to the coupled equations for the transition
region shape,

FX̂X̂ =
F 2

X̂

2F
+ 4λe

(
η̃
FX̂

F 2

)
(3.80)

and the viscosity,

1

η̃α
=

1

η̃α−1
+

[
2σλe

a′
0|τ1/2|

]α−1(
1

a

|FX̂|
|F 2|

)α−1

, (3.81)

where η̃ = η/η0. The auxiliary conditions for the shape at the endpoints of the
transition region are

FX̂X̂ → 1 as X̂ → ∞ (3.82)

and

F → 1 as X̂ → −∞. (3.83)

The coefficient λe is no longer a simple function of the viscous model parameters
because the coupling of the equation of motion with the viscosity is more complex.
At any given time the solution to (3.80) and (3.81) is determined by a numerical
method similar to that used for the power-law foam model.

The transition-region variables plotted in figure 7 are the shape, and measures of the
viscosity, the pressure and the shear rate, scaled for the two materials. The computed
value of λe is 194 for hydroxyethylcellulose and 0.532 for polystyrene. These two
cases represent liquids with vastly different viscous behaviour. (As shown in table 1,
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Figure 7. (a) Transition region variables for hydroxyethylcellulose using the Ellis law in which
Cr = 2961.5, α = 2.073 and λ (computed) = 194. The curves are denoted by (i) ‘shape’, F , the
transition-region shape scaled by the lamellar thickness, (ii) ‘viscosity’, the actual viscosity
scaled by η0|τ1/2a

′
0/σ |α−1, (iii) ‘shear rate’, the shear rate scaled by 21/n−1/2(σ/(ka′

0))
1/n, and (iv)

‘pressure’, the pressure scaled by σ/a′
0. (b) Transition-region variables for polystyrene using the

Ellis law in which Cr =0.049206, α = 3.2 and λe (computed) = 0.531. The curves are denoted
by (i) ‘shape’, F , (ii) ‘viscosity’, the actual viscosity scaled by η0 the viscosity at zero shear rate,
(iii) ‘shear rate’, the shear rate scaled by 21/n−1/2λe(σ/(ka′

0))
1/n and (iv) ‘pressure’, σ/a′

0.

polystyrene has a very large viscosity. Nevertheless, thinning still occurs, although the
characteristic time scale is orders of magnitude larger than for hydroxyethylcellulose.)
The variable Cr (= 2σ/(|τ1/2|a′

0) is an indicator of the tendency of the liquid in a foam
to exhibit shear-thinning behaviour in the Ellis model. For hydroxyethylcellulose,
Cr = 2961.5 indicating that in this foam the power-law regime will be predominant in
the transition region. The large value of Cr also indicates that if the viscosity is scaled
by its value at zero shear rate η0, it will decrease from unity to nearly zero over a
very short distance from the lamellar border just inside the transition region. A more
appropriate scaling is given in the caption of figure 7. As shown in figure 7(a), the
viscosity behaves similar to the power-law case in the interior of the transition region.
Near the boundaries of the transition region, the shear rate decreases to zero, so
that the Ellis model of the viscosity in the transition region is capped by its value η0

and is not singular, although this is not shown in the plot. For polystyrene, however,
Cr = 0.492, which indicates that the liquid will remain Newtonian-like in a foam with
a Plateau border radius of curvature of 10−5 m. Therefore, in figure 7(b) the scale η0

for the viscosity is retained, and the viscosity is very close to unity throughout the
transition region. Finally, if the results calculated for the semi-arid and arid foams
using the power-law model of viscosity are superposed on the Ellis model plots shown
in figure 7, the shape, the pressure and the shear rates are very difficult to distinguish
by eye. The viscosity differs at its minimum by a factor of about 2–3 because of the
scalings chosen.

A comparison of semi-arid lamellar thinning rates in hydroxyethylcellulose and
polystyrene power-law and Ellis liquid viscosity models provides insight into
viscosity model accuracy. The power-law and the Ellis law viscosity parameters for
hydroxyethylcellulose and for polystyrene given in table 1 of this work and described
in figure 1 of Myers (2005) were determined by matching the power-law and Ellis
viscosities in the power-law regime. As a result, at a shear rate in which the Ellis-law
behaves as a Newtonian fluid the Ellis fluid will have a lower viscosity than the
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power-law fluid. Therefore, in the case of these two liquids, the Ellis lamellar films
will thin more rapidly than the power-law films. This is true in all calculations that we
performed. However, the disparity between the thinning rates in power-law and Ellis
model liquid lamella is not as drastic in the case of hydroxyethylcellulose as in the
case of polystyrene, since in the former case most of the transition region is operating
in the power-law regime. However, in the case of polystyrene, the shear rate is so low
throughout the transition region that the Ellis model behaves as a Newtonian fluid.
This is verified by the fact that the numerically determined coefficient λe derived for
the Ellis model has the value 0.53 which is the value appropriate for a Newtonian
lamella in the scaled variables. Moreover, since the shear rate is so low in the case
of polystyrene, the disparity between the viscosities of the two models is so large
that the power-law model shows an effectively zero thinning rate. The large disparity
between the polystyrene power-law and Ellis model results illustrates how a model of
the viscosity can be highly inaccurate, although in many cases it may not be obvious
which is the more accurate model without experimental observations for validation.

In the power-law foam, the choices used for the velocity and the viscosity scales
result in O(1) minimum viscosity, occurring in the interior of the transition region, as
can be seen from figures 5 and 6. In the Ellis model, since there are the two viscosity
regimes, a different scaling choice may be appropriate if the value of Cr = 2σ/|τ1/2|a′

0

is very large. Substituting λe = λ̂λs and ηe = η̂ηs in (3.80) and (3.81), and for the case in
which the viscosity within the transition region becomes very small, the appropriate
balancing of terms in the two equations gives

ηs =

∣∣∣∣∣a′
0

∣∣τ1/2

∣∣
2σ

∣∣∣∣∣
α−1

and λs =
1

ηs

. (3.84)

An estimate of the new liquid viscosity scale is found using data for
hydroxytheylcellulose, provided in table 1. Assuming that the radius of curvature
of the foam Plateau border is 10−5 m then ηs = 1.88 × 10−4 kg (m s)−1. We identify
(3.84) as the appropriate high shear-thinning scale, whereas η0 would remain as the
low shear-thinning scale in foams.

For highly shear-thinning liquids the resulting Ellis foam transition region model
becomes

FX̂X̂ =
F 2

X̂

2F
+ 4λ̂

(
η̂
FX̂

F 2

)
(3.85)

and

1

η̂α
=

1

η̂α−1

[
2σ

a′
0|τ1/2|

]α−1

+ λ̂α−1

(
1

a

|FX̂|
|F 2|

)α−1

. (3.86)

However, the functional form of the lamellar thinning rate remains invariant:

dHL

dT̄
= −λ̂

H
3/2
L

a1/2
. (3.87)

provided that time is rescaled by T̄ = T λs .

4. Discussion
The analysis of the problem of the thinning of lamella in a non-Newtonian foam

can be stated as a flow problem in which the essential parameters that describe the
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geometry of the foam are time dependent and the viscosity varies along the direction
of flow (a contrast with the work of Myers 2005.) Despite these complexities progress
can be made in identifying an apparent viscosity which can be used in the canonical
equations developed in Brush & Davis (2005).

The aim is to take two descriptions of the fluid viscosity and equate them in such
a way that their dimensional time scales for thinning are the same. In this way the
material parameters that describe an Ellis fluid can be converted to apparent material
parameters for either a power-law fluid or a Newtonian fluid, so that the simplicity
of these latter models can be exploited in calculations. Such a condition will result in
a relationship between the functions λe calculated in the Ellis model and with λ{n}
calculated in the power-law model. Also setting the interface thickness scales equal,
the following identity is derived

21−1/nk2/nσ 1−2/n

(a′
0)

2−2/nη0

λ̂e = λ{n}. (4.1)

This result guarantees that the canonical form of the semi-arid Ellis and power-law
models provide identical real-time thinning rates. If all of the model parameters are
known, then (4.1) gives λe in terms of λ{n}. Alternatively, suppose α is unknown.
Then, given an initial guess for α, the results for the Ellis model can be iterated
using (4.1) until the appropriate value of α is found bringing the thinning rates into
agreement.

The results of this analysis support the suggestion by Myers (2005) that predictions
of the fluid velocity using the power-law model may be inaccurate. For the
hydroxyethylcellulose solution figures 6(c) and 7(a) show very similar flows, whereas
for polystyrene figures 6(d ) and 7(b) show significant differences. In the former case,
the shear rate in the transition region is sufficiently high that according to the Ellis
model the fluid exhibits mostly power-law behaviour. In the latter case, the shear rate
is so low that the fluid will be primarily Newtonian and according to the Ellis model
which accounts for low shear rate Newtonian behaviour, the predictions of the flow
are widely different from the predictions made using the power-law model.

Finally, the results of this study show that for some shear-thinning materials
(hydroxyethylcellulose) the shear rate can become so large that the viscosity can
vary by orders of magnitude within the transition region. For example, in figure 7(a)
the dimensional shear rate reaches a value of a couple of thousand per second. The
results support the argument put forth in § 1 that there is the possibility that a second
high-shear rate transition occurs and that the Carreau model could be used to account
for this behaviour. However, such a study has not been carried out for the reasons
listed.

5. Conclusions
In this work, the thinning of lamella in two-dimensional surfactant-free foams

having a non-Newtonian liquid phase is derived using matched asymptotic analyses
in capillary number. Two generalized Newtonian liquid models, (i) the power-law
model and (ii) the Ellis model are used in the analysis. According to the power-law
model, in shear-thinning fluids, the viscosity is singular at the transition–lamellar
region boundary and at the transition–Plateau boundary. Nevertheless, the fluid
velocities, the foam gas–liquid interface shape and the pressure are well behaved
throughout. The Ellis model does not exhibit a singularity in the viscosity.



Thinning of lamellae in surfactant-free foams with non-Newtonian liquid phase 257

One important finding of the analysis is that the variation in shear rate within the
transition region renders the matching condition at the transition–Plateau boundary
non-local. This result is in contrast to the local matching condition derived for the case
of a Newtonian fluid in which the viscosity is constant throughout. Thus, numerical
methods are developed to solve the equation for the transition-region shape and all
other quantities that are used in determining the thinning law for the liquid lamellae.

Thinning rates are calculated for different fluids. In all cases considered, the
thinning rates exhibit an initial transient acceleration over approximately two orders
of magnitude of lamellar thinning from the initial film thickness, before settling into
t−2 behaviour at longer times.

There are two types of foam, ‘semi-arid’ and ‘arid’, representing distinct asymptotic
limits (Brush & Davis 2005). In semi-arid foam with power-law viscosity, a time
constant can be chosen so that the thinning rates are independent of the two power-
law parameters k and n. The power-law semi-arid foam obeys the same dynamical
equation as a Newtonian foam. The semi-arid Ellis-model foam also exhibits the
same behaviour. Thus, the change in time scale is the dominant leading-order effect
in semi-arid foam thinning, pointing to the existence of an effective viscosity that
may be used to monitor film thinning rates. This result is consistent with the results
of Safouane et al. (2006) who showed in forced drainage experiments performed
on a number of non-Newtonian foaming solutions that an effective viscosity can
be identified in which the velocity of draining is the same as in a Newtonian
fluid.

For the arid foam, in which the volume fraction of liquid is asymptotically smaller
than the semi-arid foam and the radius of curvature of the Plateau border adjusts to
the flow of incoming fluid from the thinning film, the thinning rate depends explicitly
on the parameters defining the viscosity.

The Ellis model of viscosity avoids a singularity in the viscosity by including a low-
shear-rate Newtonian Plateau. Calculations of the thinning rates are more complicated
in the case of the Ellis model than in the power-law model, since they require the
simultaneous solutions of multiple equations governing the transition-region shape
and the viscosity. The Ellis model is shown to provide two scaling regimes for the
viscosity in the transition region. The zero-shear-rate viscosity is appropriate for
foams in which the shear rate is low enough throughout the transition region that
the viscosity remains near the critical value marking the switch from Newtonian to
power-law behaviour. For foams in which the shear rates are much larger, a different
scaling for the viscosity is more appropriate, since the Ellis model exhibits power-law
behaviour virtually throughout the transition region.

Calculations have been carried out for hydroxytheylcellulose, polysytrene, blood, a
fictitious shear-thickening foam liquid and a Newtonian foam. In all cases, dimensional
thinning rates are heavily dependent on the magnitude of the viscosity throughout
the transition region. The larger the viscosity, the slower the thinning rate. However,
conclusions regarding the stability of foam lamellae cannot be made based on thinning
rate alone.

This work shows how a leading-order matched asymptotic analysis can be used
to calculate interface shapes and viscous profiles in a self-consistent manner even
for more complex rheologies than simple Newtonian foam. The transition-region
dynamics dictate the rate of thinning, hence this has required the need to account for
and to model the shear rate and variation in the viscosity in this region. The results
are consistent with reported experimental results and provide insight into the reasons
for the observed behaviour.
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Appendix A
Equation (3.48) is factored,

1

δ

[
HX̂X̂H − 1

2
H 2

X̂

]
X̂

+ 4
(
η̃HU

(0)

X̂

)
X̂

= 0, (A 1)

and integrated to give

1

δ

[
HX̂X̂H − 1

2
H 2

X̂

]
+ 4η̃HU

(0)

X̂
= C1. (A 2)

C1 = 0 since in the limit X̂ → −∞ all shape derivatives vanish. Substituting U (0) = Q/H

and multiplying by H −3/2 gives

1

δ

[
HX̂X̂H −1/2 − 1

2

(
H 2

X̂

)
H −3/2

]
− 4η̃Q

HX̂

H 5/2
= 0. (A 3)

Equation (A 3) may be rewritten as

1

δ

(
HX̂H −1/2

)
X̂

+
8

3
η̃Q

(
H −3/2

)
X̂

= 0. (A 4)

Let Q̂= Qδ. Integrating (A 4) gives

HX̂H −1/2 +
8

3
Q̂

∫ X̂

η̃
(
H −3/2

)
X̂′dX̂′ = C2, (A 5)

where X̂′ denotes a dummy integration variable. C2 is defined by taking the limit
X̂ → − ∞ so that

C2 =
8

3
Q̂ lim

X̂→−∞

[∫ X̂

η̃
(
H −3/2

)
X̂′dX̂′

]
≡ 8

3
Q̂η̃−∞H

−3/2
L , (A 6)

where HL is the lamellar thickness, which is the value attained by H as X̂ → − ∞.
Integrating by parts gives:

HX̂H −1/2 +
8

3
Q̂

[
η̃H −3/2 −

∫ X̂

η̃X̂′H
−3/2dX̂′

]
= C2, (A 7)

where all terms outside the integral are evaluated at X̂, and η̃X̂′ is the derivative of

η̃{X̂′} with respect to X̂′. Thus,

HX̂H −1/2 +
8

3
Q̂

[
η̃H −3/2 − η̃−∞H

−3/2
L −

∫ X̂

η̃X̂′H
−3/2dX̂′

]
= 0. (A 8)
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Solving for HX̂ ,

HX̂ = − 8Q̂

3HL

[
η̃
HL

H
− η̃−∞

H 1/2

H
1/2
L

]
+

8Q̂

3
H 1/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)
. (A 9)

Differentiating HX̂ ,

HX̂X̂ = − 8Q̂

3HL

[
η̃X̂

HL

H
− η̃

HLHX̂

H 2
− η̃−∞

HX̂

2H 1/2H
1/2
L

]

+
8Q̂

3

(
HX̂

2H 1/2

)(∫ X̂

η̃X̂′H
−3/2dX̂′

)
+

8Q̂

3

(
η̃X̂

H

)
. (A 10)

The first and last terms on the right-hand side cancel. The remaining terms can be
rearranged to give

HX̂X̂ =
8Q̂

3HL

[
η̃
HLHX̂

H 2
+ η̃−∞

HX̂

2H 1/2H
1/2
L

]
+

8Q̂

3

(
HX̂

2H 1/2

)(∫ X̂

η̃X̂′H
−3/2dX̂′

)
.

(A 11)

Factoring out HX̂ ,

HX̂X̂ =
8Q̂

3

[
η̃

H 2
+

η̃−∞

2H 1/2H
3/2
L

+
1

2H 1/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)]
HX̂. (A 12)

Substituting in the expression for HX̂ ,

HX̂X̂ =
8Q̂

3

[
η̃

H 2
+

η̃−∞

2H 1/2H
3/2
L

+
1

2H 1/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)]

× 8Q̂

3

[
− η̃

H
+ η̃−∞

H 1/2

H
3/2
L

+ H 1/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)]
. (A 13)

Multiplying,

HX̂X̂ =

(
8Q̂

3

)2 [
− η̃2

H 3
− η̃η̃−∞

2H 3/2H
3/2
L

+
η̃η̃−∞

H 3/2H
3/2
L

+
η̃2

−∞
2H 3

L

+
η̃

H 3/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)
+

η̃−∞

2H
3/2
L

(∫ X̂

η̃X̂′H
−3/2dX̂′

)

− η̃

2H 3/2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)
+

η̃−∞

2H
3/2
L

(∫ X̂

η̃X̂′H
−3/2dX̂′

)

+
1

2

(∫ X̂

η̃X̂′H
−3/2dX̂′

)2]
, (A 14)
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which upon factoring out H 3
L and grouping terms becomes

HX̂X̂ =

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+
η̃η̃−∞

2

[
HL

H

]3/2

− η̃2

[
HL

H

]3

+
η̃

2

[
HL

H

]3/2
(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)
+ η̃−∞

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)

+
1

2

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)2 ]
. (A 15)

Finally, in the limit as X̂ → + ∞, the ratio of HL/H → 0 which leaves

HX̂X̂ =

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ lim
X̂→∞

[
η̃−∞

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)

+
1

2

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)2 ]]
. (A 16)

The first term on the right-hand side reduces to the appropriate limit if the liquid is
Newtonian. The last two integrals are constant in this limit, but are not evaluable
without knowledge of the entire transition-region shape. Defining the constant

D = lim
X̂→∞

⎡⎣η̃−∞

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)
+

1

2

(∫ X̂

η̃X̂′

[
HL

H

]3/2

dX̂′

)2
⎤⎦ , (A 17)

the approximate shape of the transition region at the transition region/Plateau border

boundary can be determined by integrating (A 16) in X̂. The result is

H =

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
X̂2

2
+ A1X̂ + A2 (A 18)

revealing that, through D, the variable viscosity helps determine the magnitude of the
curvature at the transition Plateau border boundary at leading order.

Appendix B
The transition-region interface shape H and the Plateau border interface shape h̃

derived in the text are each leading-order terms of asymptotic expansions. Matching
is accomplished by introducing the intermediate variable, Xν = (X − L)/ν, such that
δ 	 ν 	 1, and writing the Plateau border and the transition region coordinates in
terms of the intermediate variable (Kevorkian & Cole 1985):

x = L + νXν, and X̂ =
ν

δ
Xν. (B 1)

At each order ‘n’ = 0, 1, . . . , (corresponding to the order of the asymptotic expansions
of the interface shapes), the following conditions hold:

lim
δ→0, Xν fixed

[
h̃(n)(L + νXν, ·)/ε − H (n)((ν/δ)Xν, ·)

δn

]
= 0. (B 2)
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Here, we only consider the leading-order terms in the asymptotic solutions for the
shapes i.e. (3.9) and (A 18). Substituting these solutions into (B 2) for n= 0 gives

lim
δ→0, Xν fixed

[
hol

ε
+

ã

ε

(
1 − 1√

2

)
− 1√

2
Pε

+
1

ε
P

{
1 −

[
1√
2

− 
P

(
νXν − ã√

2

)]2
}1/2

−
(

8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
ν2X2

ν

2δ2
− A1

νXν

δ
− A2

]
= 0. (B 3)

Expanding the square root at small ν gives

lim
δ→0, Xν fixed

[
hol

ε
+

ã

ε

(
1 − 1√

2

)
− 1√

2
Pε

−
[
1 − 4ã
P + 2ã2
P 2 + 4ã3
P 3 + ã4
P 4

][√
2ε
P

(
1 − 2ã
P − ã2
P 2

)3/2]
−

(
√

2νXν
P
[
(1 − ã
P − 3ã2
P 2 − ã3
P 3)

]
− (2(νXν
P )2))[√

2ε
P (1 − 2ã
P − ã2
P 2)3/2
]

−
(

8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
ν2X2

ν

2δ2
− A1

νXν

δ
− A2 + · · ·

]
= 0. (B 4)

The choice 
P ≡ −1/ã is made, so that the leading-order Plateau border shape obeys
the Young–Laplace equation. The matching condition becomes

hol

ε
− A2 − A1

νXν

δ
+

(νXν)
2

2εã
−
(

8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
ν2X2

ν

2δ2
= 0. (B 5)

From (B 5), the following conclusions are reached. First, A2 = hol/ε, so that the
thicknesses of the transition and Plateau border regions match for hol ∼ O(ε). Second,
A1 vanishes at leading order, thereby fixing the relative lateral positions of the
transition and the Plateau borders. Thus,

1

εã
=

(
8Q̂

3H
3/2
L

)2 [
η̃2

−∞
2

+ D

]
1

δ2
, (B 6)

which is a leading-order matching condition for the curvatures of the transition and
the Plateau border regions.
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